Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1297614, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38586466

RESUMO

Introduction: The disorders in the metabolism of calcium can present with manifestations that strongly suggest their diagnosis; however, most of the time, the symptoms with which they are expressed are nonspecific or present only as a laboratory finding, usually hypercalcemia. Because many of these disorders have a genetic etiology, in the present study, we sequenced a selection of 55 genes encoding the principal proteins involved in the regulation of calcium metabolism. Methods: A cohort of 79 patients with hypercalcemia were analyzed by next-generation sequencing. Results: The 30% of our cohort presented one pathogenic or likely pathogenic variant in genes associated with hypercalcemia. We confirmed the clinical diagnosis of 17 patients with hypocalciuric hypercalcemia (pathogenic or likely pathogenic variants in the CASR and AP2S1 genes), one patient with neonatal hyperparathyroidism (homozygous pathogenic variant in the CASR gene), and another patient with infantile hypercalcemia (two pathogenic variants in compound heterozygous state in the CYP24A1 gene). However, we also found variants in genes associated with primary hyperparathyroidism (GCM2), renal hypophosphatemia with or without rickets (SLC34A1, SLC34A3, SLC9A3R1, VDR, and CYP27B1), DiGeorge syndrome (TBX1 and NEBL), and hypophosphatasia (ALPL). Our genetic study revealed 11 novel variants. Conclusions: Our study demonstrates the importance of genetic analysis through massive sequencing to obtain a clinical diagnosis of certainty. The identification of patients with a genetic cause is important for the appropriate treatment and identification of family members at risk of the disease.


Assuntos
Hipercalcemia , Hiperparatireoidismo , Recém-Nascido , Humanos , Hipercalcemia/genética , Hipercalcemia/diagnóstico , Cálcio , Perfil Genético , Mutação , Hiperparatireoidismo/genética
4.
Sci Rep ; 13(1): 12587, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537162

RESUMO

Bartter syndrome (BS) is a salt-losing hereditary tubulopathy characterized by hypokalemic metabolic alkalosis with secondary hyperaldosteronism. Confirmatory molecular diagnosis may be difficult due to genetic heterogeneity and overlapping of clinical symptoms. The aim of our study was to describe the different molecular findings in patients with a clinical diagnosis of classic BS. We included 27 patients (26 families) with no identified pathogenic variants in CLCNKB. We used a customized Ion AmpliSeq Next-Generation Sequencing panel including 44 genes related to renal tubulopathies. We detected pathogenic or likely pathogenic variants in 12 patients (44%), reaching a conclusive genetic diagnosis. Variants in SLC12A3 were found in 6 (Gitelman syndrome). Median age at diagnosis was 14.6 years (range 0.1-31), with no history of prematurity or polyhydramnios. Serum magnesium level was low in 2 patients (33%) but urinary calcium excretion was normal or low in all, with no nephrocalcinosis. Variants in SLC12A1 were found in 3 (BS type 1); and in KCNJ1 in 1 (BS type 2). These patients had a history of polyhydramnios in 3 (75%), and the mean gestational age was 34.2 weeks (SD 1.7). The median age at diagnosis was 1.8 years (range 0.1-6). Chronic kidney disease and nephrocalcinosis were present in 1 (25%) and 3 (75%) patients, respectively. A variant in CLCN5 was found in one patient (Dent disease), and in NR3C2 in another patient (Geller syndrome). Genetic diagnosis of BS is heterogeneous as different tubulopathies can present with a similar clinical picture. The use of gene panels in these diseases becomes more efficient than the study gene by gene with Sanger sequencing.


Assuntos
Síndrome de Bartter , Nefrocalcinose , Poli-Hidrâmnios , Feminino , Humanos , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Síndrome de Bartter/diagnóstico , Síndrome de Bartter/genética , Genótipo , Membro 1 da Família 12 de Carreador de Soluto/genética , Canais de Cloreto/genética , Membro 3 da Família 12 de Carreador de Soluto/genética
5.
Nutrients ; 14(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35565821

RESUMO

Vitamin D is essential for the normal mineralization of bones during childhood. Although diet and adequate sun exposure should provide enough of this nutrient, there is a high prevalence of vitamin D deficiency rickets worldwide. Children with certain conditions that lead to decreased vitamin D production and/or absorption are at the greatest risk of nutritional rickets. In addition, several rare genetic alterations are also associated with severe forms of vitamin-D-resistant or -dependent rickets. Although vitamin D3 is the threshold nutrient for the vitamin D endocrine system (VDES), direct measurement of circulating vitamin D3 itself is not a good marker of the nutritional status of the system. Calcifediol (or 25(OH)D) serum levels are used to assess VDES status. While there is no clear consensus among the different scientific associations on calcifediol status, many clinical trials have demonstrated the benefit of ensuring normal 25(OH)D serum levels and calcium intake for the prevention or treatment of nutritional rickets in childhood. Therefore, during the first year of life, infants should receive vitamin D treatment with at least 400 IU/day. In addition, a diet should ensure a normal calcium intake. Healthy lifestyle habits to prevent vitamin D deficiency should be encouraged during childhood. In children who develop clinical signs of rickets, adequate treatment with vitamin D and calcium should be guaranteed. Children with additional risk factors for 25(OH)D deficiency and nutritional rickets should be assessed periodically and treated promptly to prevent further bone damage.


Assuntos
Pediatria , Raquitismo , Deficiência de Vitamina D , Calcifediol , Cálcio/uso terapêutico , Criança , Colecalciferol/uso terapêutico , Humanos , Lactente , Raquitismo/tratamento farmacológico , Raquitismo/etiologia , Raquitismo/prevenção & controle , Vitamina D , Deficiência de Vitamina D/epidemiologia , Vitaminas/uso terapêutico
6.
Nefrología (Madrid) ; 41(4): 383-390, jul.-ago. 2021. tab, ilus
Artigo em Espanhol | IBECS | ID: ibc-227910

RESUMO

La acidosis tubular renal distal (ATRD) es una enfermedad rara que se debe al fallo del proceso normal de acidificación de la orina a nivel tubular distal y colector. Se caracteriza por una acidosis metabólica hiperclorémica persistente, con anión gap normal en plasma, en presencia de un pH urinario elevado y baja excreción urinaria de amonio. Se han descrito hasta el momento 5 genes cuyas mutaciones dan lugar a ATRD primaria. Las alteraciones de los genes ATP6V1B1 y ATP6V0A4 se heredan de forma recesiva y están asociadas a formas de inicio más precoces y con sordera neurosensorial en muchos casos. Las variantes patogénicas en el gen SLC4A1 se heredan habitualmente de forma dominante y dan lugar a cuadros más leves, con un diagnóstico más tardío y alteraciones electrolíticas menores. Sin embargo, la evolución a nefrocalcinosis y litiasis, y el desarrollo de enfermedad renal crónica a medio-largo plazo se ha descrito de forma similar en estos 3grupos. Por último, se han descrito también formas recesivas de ATRD asociadas a mutaciones en los genes FOXI1 y WDR72. El manejo clínico de la ATRD se basa en sales de bicarbonato o citrato, que no logran corregir en todos los casos las alteraciones metabólicas descritas y, por lo tanto, las consecuencias asociadas a ellas. Recientemente, un nuevo tratamiento basado en sales de bicarbonato y citrato de liberación prolongada ha recibido la denominación de medicamento huérfano en Europa para el tratamiento de la ATRD. (AU)


Distal renal tubular acidosis (DRTA) is a rare disease resulting from a failure in the normal urine acidification process at the distal tubule and collecting duct level. It is characterised by persistent hyperchloremic metabolic acidosis, with a normal anion gap in plasma, in the presence of high urinary pH and low urinary excretion of ammonium. To date, 5 genes whose mutations give rise to primary DRTA have been described. Alterations in the ATP6V1B1 and ATP6V0A4 genes are inherited recessively and are associated with forms of early onset and, in many cases, with neurosensorial deafness. Pathogenic variants in the SLC4A1 gene are habitually inherited dominantly and give rise to milder symptoms, with a later diagnosis and milder electrolytic alterations. Nonetheless, evolution to nephrocalcinosis and lithiasis, and the development of chronic kidney disease in the medium to long term has been described in a similar manner in all 3groups. Lastly, recessive forms of DTRA associated to mutations in the FOXI1 and WDR72 genes have also been described. The clinical management of DTRA is based on bicarbonate or citrate salts, which do not succeed in correcting all cases of the metabolic alterations described and, thus, the consequences associated with them. Recently, a new treatment based on slow-release bicarbonate and citrate salts has received the designation of orphan drug in Europe for the treatment of DTRA. (AU)


Assuntos
Humanos , Acidose Tubular Renal/tratamento farmacológico , Acidose Tubular Renal/genética , Bicarbonatos/uso terapêutico , Ácido Cítrico/uso terapêutico
8.
Pediatr Nephrol ; 36(10): 3133-3142, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33881640

RESUMO

BACKGROUND: Primary distal renal tubular acidosis (dRTA) is a rare genetic disorder caused by impaired distal mechanisms of urinary acidification. Most cases are secondary to pathogenic variants in ATP6V0A4, ATP6V1B1, and SLC4A1 genes, which encode transporters regulating acid-base balance in the collecting duct. METHODS: Retrospective study of molecular and clinical data from diagnosis and long-term follow-up (10, 20, and 40±10 years) of 16 patients with primary dRTA diagnosed in childhood. RESULTS: Molecular analyses revealed nine patients had ATP6V0A4 pathogenic variants, five in ATP6V1B1, and two in SLC4A1. A novel intragenic deletion and a common ATP6V0A4 gene variant (c.1691 + 2dupT) in ATP6V0A4 occurred in two-thirds of these patients, suggesting a founder effect. Median age at diagnosis was 3.25 months (IQR 1, 13.5), which was higher in the SLC4A1 group. Median SDS height at diagnosis was -1.02 (IQR -1.79, 0.14). Delayed clinical diagnosis was significantly related to growth failure (P = 0.01). Median SDS height at 20 years follow-up was -1.23 (IQR -1.71, -0.48), and did not significantly improve from diagnosis (P = 0.76). Kidney function declined over time: at last follow-up, 43% had moderate to severe chronic kidney disease (CKD). Adequate metabolic control was not related to CKD development. Incidence of sensorineural hearing loss (SNHL) was high in ATP6V1B1 patients, though not universal. Patients harboring ATP6V0A4 variants also developed SNHL at a high rate (80%) over time. CONCLUSIONS: Patients with dRTA can develop moderate to severe CKD over time with a high frequency despite adequate metabolic control. Early diagnosis ameliorates long-term height prognosis.


Assuntos
Acidose Tubular Renal , Perda Auditiva Neurossensorial , Insuficiência Renal Crônica , ATPases Vacuolares Próton-Translocadoras , Acidose Tubular Renal/diagnóstico , Acidose Tubular Renal/genética , Proteína 1 de Troca de Ânion do Eritrócito/genética , Humanos , Mutação , Estudos Retrospectivos , ATPases Vacuolares Próton-Translocadoras/genética
9.
Sci Rep ; 11(1): 2968, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536578

RESUMO

The GCM2 gene encodes a transcription factor predominantly expressed in parathyroid cells that is known to be critical for development, proliferation and maintenance of the parathyroid cells. A cohort of 127 Spanish patients with a disorder of calcium metabolism were screened for mutations by Next-Generation Sequencing (NGS). A targeted panel for disorders of calcium and phosphorus metabolism was designed to include 65 genes associated with these disorders. We observed two variants of uncertain significance (p.(Ser487Phe) and p.Asn315Asp), one likely pathogenic (p.Val382Met) and one benign variant (p.Ala393_Gln395dup) in the GCM2 gene in the heterozygous state in five families (two index cases had hypocalcemia and hypoparathyroidism, respectively, and three index cases had primary hyperparathyroidism). Our study shows the utility of NGS in unravelling the genetic origin of some disorders of the calcium and phosphorus metabolism, and confirms the GCM2 gene as an important element for the maintenance of calcium homeostasis. Importantly, a novel variant in the GCM2 gene (p.(Ser487Phe)) has been found in a patient with hypocalcemia.


Assuntos
Cálcio/metabolismo , Hiperparatireoidismo Primário/genética , Hipocalcemia/genética , Hipoparatireoidismo/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Adolescente , Adulto , Idoso , Cálcio/sangue , Sinalização do Cálcio/genética , Estudos de Coortes , Análise Mutacional de DNA , Feminino , Mutação em Linhagem Germinativa , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hiperparatireoidismo Primário/sangue , Hiperparatireoidismo Primário/diagnóstico , Hipocalcemia/sangue , Hipocalcemia/diagnóstico , Hipoparatireoidismo/sangue , Hipoparatireoidismo/diagnóstico , Lactente , Masculino , Pessoa de Meia-Idade , Proteínas Nucleares/metabolismo , Glândulas Paratireoides , Hormônio Paratireóideo/sangue , Hormônio Paratireóideo/metabolismo , Fatores de Transcrição/metabolismo
10.
Nefrologia (Engl Ed) ; 41(4): 383-390, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36165107

RESUMO

Distal renal tubular acidosis (DRTA) is a rare disease resulting from a failure in the normal urine acidification process at the distal tubule and collecting duct level. It is characterised by persistent hyperchloremic metabolic acidosis, with a normal anion gap in plasma, in the presence of high urinary pH and low urinary excretion of ammonium. To date, 5 genes whose mutations give rise to primary DRTA have been described. Alterations in the ATP6V1B1 and ATP6V0A4 genes are inherited recessively and are associated with forms of early onset and, in many cases, with neurosensorial deafness. Pathogenic variants in the SLC4A1 gene are habitually inherited dominantly and give rise to milder symptoms, with a later diagnosis and milder electrolytic alterations. Nonetheless, evolution to nephrocalcinosis and lithiasis, and the development of chronic kidney disease in the medium to long term has been described in a similar manner in all 3 groups. Lastly, recessive forms of DTRA associated to mutations in the FOXI1 and WDR72 genes have also been described. The clinical management of DTRA is based on bicarbonate or citrate salts, which do not succeed in correcting all cases of the metabolic alterations described and, thus, the consequences associated with them. Recently, a new treatment based on slow-release bicarbonate and citrate salts has received the designation of orphan drug in Europe for the treatment of DTRA.


Assuntos
Acidose Tubular Renal , Bicarbonatos , Citratos , ATPases Vacuolares Próton-Translocadoras , Acidose Tubular Renal/tratamento farmacológico , Acidose Tubular Renal/genética , Compostos de Amônio/metabolismo , Bicarbonatos/uso terapêutico , Citratos/uso terapêutico , Fatores de Transcrição Forkhead/genética , Humanos , ATPases Vacuolares Próton-Translocadoras/genética
13.
PLoS One ; 15(9): e0239965, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32997713

RESUMO

The maintenance of magnesium (Mg2+) homeostasis is essential for human life. The Cystathionine-ß-synthase (CBS)-pair domain divalent metal cation transport mediators (CNNMs) have been described to be involved in maintaining Mg2+ homeostasis. Among these CNNMs, CNNM2 is expressed in the basolateral membrane of the kidney tubules where it is involved in Mg2+ reabsorption. A total of four patients, two of them with a suspected disorder of calcium metabolism, and two patients with a clinical diagnosis of primary tubulopathy were screened for mutations by Next-Generation Sequencing (NGS). We found one novel likely pathogenic variant in the heterozygous state (c.2384C>A; p.(Ser795*)) in the CNNM2 gene in a family with a suspected disorder of calcium metabolism. In this family, hypomagnesemia was indirectly discovered. Moreover, we observed three novel variants of uncertain significance in heterozygous state in the other three patients (c.557G>C; p.(Ser186Thr), c.778A>T; p.(Ile260Phe), and c.1003G>A; p.(Asp335Asn)). Our study shows the utility of Next-Generation Sequencing in unravelling the genetic origin of rare diseases. In clinical practice, serum Mg2+ should be determined in calcium and PTH-related disorders.


Assuntos
Proteínas de Transporte de Cátions/genética , Magnésio/sangue , Erros Inatos do Transporte Tubular Renal/diagnóstico , Adolescente , Adulto , Proteínas de Transporte de Cátions/química , Códon sem Sentido , Feminino , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Masculino , Polimorfismo de Nucleotídeo Único , Erros Inatos do Transporte Tubular Renal/genética , Análise de Sequência de DNA
14.
Mol Genet Genomic Med ; 8(11): e1475, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32869508

RESUMO

BACKGROUND: Familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC) is an autosomal recessive tubulopathy characterized by excessive urinary wasting of magnesium and calcium, bilateral nephrocalcinosis, and progressive chronic renal failure in childhood or adolescence. FHHNC is caused by mutations in CLDN16 and CLDN19, which encode the tight-junction proteins claudin-16 and claudin-19, respectively. Most of these mutations are missense mutations and large deletions are rare. METHODS: We examined the clinical and biochemical features of a Spanish boy with early onset of FHHNC symptoms. Exons and flanking intronic segments of CLDN16 and CLDN19 were analyzed by direct sequencing. We developed a new assay based on Quantitative Multiplex PCR of Short Fluorescent Fragments (QMPSF) to investigate large CLDN16 deletions. RESULTS: Genetic analysis revealed two novel compound heterozygous mutations of CLDN16, comprising a missense mutation, c.277G>A; p.(Ala93Thr), in one allele, and a gross deletion that lacked exons 4 and 5,c.(840+25_?)del, in the other allele. The patient inherited these variants from his mother and father, respectively. CONCLUSIONS: Using direct sequencing and our QMPSF assay, we identified the genetic cause of FHHNC in our patient. This QMPSF assay should facilitate the genetic diagnosis of FHHNC. Our study provided additional data on the genotypic spectrum of the CLDN16 gene.


Assuntos
Claudinas/genética , Deleção de Genes , Deficiência de Magnésio/genética , Mutação de Sentido Incorreto , Nefrocalcinose/genética , Heterozigoto , Humanos , Lactente , Deficiência de Magnésio/patologia , Masculino , Nefrocalcinose/patologia , Fenótipo
15.
Artigo em Inglês | MEDLINE | ID: mdl-32714280

RESUMO

Context: The DICER1 syndrome is a multiple neoplasia disorder caused by germline mutations in the DICER1 gene. In DICER1 patients, aggressive congenital pituitary tumors lead to neonatal Cushing's disease (CD). The role of DICER1 in other corticotropinomas, however, remains unknown. Objective: To perform a comprehensive screening for DICER1 variants in a large cohort of CD patients, and to analyze their possible contribution to the phenotype. Design, setting, patients, and interventions: We included 192 CD cases: ten young-onset (age <30 years at diagnosis) patients were studied using a next generation sequencing panel, and 182 patients (170 pediatric and 12 adults) were screened via whole-exome sequencing. In seven cases, tumor samples were analyzed by Sanger sequencing. Results: Rare germline DICER1 variants were found in seven pediatric patients with no other known disease-associated germline defects or somatic DICER1 second hits. By immunohistochemistry, DICER1 showed nuclear localization in 5/6 patients. Variant transmission from one of the parents was confirmed in 5/7 cases. One patient had a multinodular goiter; another had a family history of melanoma; no other patients had a history of neoplasms. Conclusions: Our findings suggest that DICER1 gene variants may contribute to the pathogenesis of non-syndromic corticotropinomas. Clarifying whether DICER1 loss-of-function is disease-causative or a mere disease-modifier in this setting, requires further studies. Clinical trial registration: ClinicalTrials.gov: NCT00001595.


Assuntos
RNA Helicases DEAD-box/genética , Testes Genéticos/métodos , Mutação em Linhagem Germinativa , Hipersecreção Hipofisária de ACTH/diagnóstico , Ribonuclease III/genética , Adolescente , Adulto , Criança , Estudos de Coortes , Feminino , Humanos , Masculino , Hipersecreção Hipofisária de ACTH/genética , Adulto Jovem
18.
J Clin Endocrinol Metab ; 105(4)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32052034

RESUMO

CONTEXT: Familial neurohypophyseal diabetes insipidus is a rare disease produced by a deficiency in the secretion of antidiuretic hormone and is caused by mutations in the arginine vasopressin gene. OBJECTIVE: Clinical, biochemical, and genetic characterization of a group of patients clinically diagnosed with familial neurohypophyseal diabetes insipidus, 1 of the largest cohorts of patients with protein neurophysin II (AVP-NPII) gene alterations studied so far. DESIGN: The AVP-NPII gene was screened for mutations by PCR followed by direct Sanger sequencing in 15 different unrelated families from Spain. RESULTS: The 15 probands presented with polyuria and polydipsia as the most important symptoms at the time of diagnosis. In these patients, the disease was diagnosed at a median of 6 years of age. We observed 11 likely pathogenic variants. Importantly, 4 of the AVP-NPII variants were novel (p.(Tyr21Cys), p.(Gly45Ser), p.(Cys75Tyr), p.(Gly88Cys)). CONCLUSIONS: Cytotoxicity seems to be due to consequences common to all the variants found in our cohort, which are not able to fold correctly and pass the quality control of the ER. In concordance, we found autosomal dominant familial neurohypophyseal diabetes insipidus in the 15 families studied.


Assuntos
Diabetes Insípido Neurogênico/genética , Diabetes Insípido Neurogênico/patologia , Predisposição Genética para Doença , Mutação , Neurofisinas/genética , Precursores de Proteínas/genética , Vasopressinas/genética , Adolescente , Adulto , Criança , Pré-Escolar , Família , Feminino , Seguimentos , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Prognóstico , Adulto Jovem
19.
PLoS One ; 14(7): e0220634, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31365591

RESUMO

OBJECTIVE: Monogenic diabetes can be misdiagnosed as type 1 or type 2 diabetes in children. The right diagnosis is crucial for both therapeutic choice and prognosis and influences genetic counseling. The main objective of this study was to search for monogenic diabetes in Spanish pediatric patients suspected of type 1 diabetes with lack of autoimmunity at the onset of the disease. We also evaluated the extra value of ZnT8A in addition to the classical IAA, GADA and IA2A autoantibodies to improve the accuracy of type 1 diabetes diagnosis. METHODS: Four hundred Spanish pediatric patients with recent-onset diabetes (mean age 8.9 ± 3.9 years) were analyzed for IAA, GADA, IA2A and ZnT8A pancreatic-autoantibodies and HLA-DRB1 alleles. Patients without autoimmunity and those with only ZnT8A positive were screened for 12 monogenic diabetes genes by next generation sequencing. RESULTS: ZnT8A testing increased the number of autoantibody-positive patients from 373 (93.3%) to 377 (94.3%). An isolated positivity for ZnT8A allowed diagnosing autoimmune diabetes in 14.8% (4/27) of pediatric patients negative for the rest of the antibodies tested. At least 2 of the 23 patients with no detectable autoimmunity (8%) carried heterozygous pathogenic variants: one previously reported missense variant in the INS gene (p.Gly32Ser) and one novel frameshift variant (p.Val264fs) in the HNF1A gene. One variant of uncertain significance was also found. Carriers of pathogenic variants had HLA-DRB1 risk alleles for autoimmune diabetes and clinical characteristics compatible with type 1 diabetes except for the absence of autoimmunity. CONCLUSION: ZnT8A determination improves the diagnosis of autoimmune diabetes in pediatrics. At least 8% of pediatric patients suspected of type 1 diabetes and with undetectable autoimmunity have monogenic diabetes and can benefit from the correct diagnosis of the disease by genetic study.


Assuntos
Autoanticorpos/imunologia , Autoimunidade/imunologia , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/imunologia , Cadeias HLA-DRB1/imunologia , Transportador 8 de Zinco/imunologia , Adolescente , Autoanticorpos/sangue , Criança , Pré-Escolar , Estudos de Coortes , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/genética , Feminino , Cadeias HLA-DRB1/genética , Humanos , Masculino , Prognóstico , Transportador 8 de Zinco/genética
20.
Clin Kidney J ; 12(3): 373-379, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31198537

RESUMO

BACKGROUND: Mutations in hepatocyte nuclear factor 1B (HNF1B) have been associated with congenital anomalies of the kidney and urinary tract (CAKUT) in humans. Diabetes and other less frequent anomalies have also been described. Variable penetrance and intrafamilial variability have been demonstrated including severe prenatal phenotypes. Thus, it is important to differentiate this entity from others with similar clinical features and perform confirmatory molecular diagnosis. METHODS: This study reports the results of HNF1B screening in a cohort of 60 patients from 58 unrelated families presenting with renal structural anomalies and/or non-immune glucose metabolism alterations, and other minor features suggesting HNF1B mutations. RESULTS: This study identified a pathogenic variant in 23 patients from 21 families. The most frequent finding was bilateral cystic dysplasia or hyperechogenic kidneys (87% of patients). Sixty percent of them also fulfilled the criteria for impaired glucose metabolism, and these were significantly older than those patients with an HNF1B mutation but without diabetes or prediabetes (14.4 versus 3.3 years, P < 0.05). Furthermore, patients with HNF1B mutations had higher frequency of pancreatic structural anomalies and hypomagnesaemia than patients without mutations (P < 0.001 and P = 0.003, respectively). Hyperuricaemia and increased liver enzymes were detected in some patients as well. CONCLUSIONS: Renal anomalies found in patients with HNF1B mutations are frequently unspecific and may resemble those found in other renal pathologies (CAKUT, ciliopathies). Active searching for extrarenal minor features, especially pancreatic structural anomalies or hypomagnesaemia, could support the indication for molecular diagnosis to identify HNF1B mutations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...